.

 
T

Introducción        

    Las mareas de los océanos constituyen una fuente gratuita, limpia e inagotable de energía. Solamente Francia y la ex Unión Soviética tienen experiencia práctica en centrales eléctricas accionadas por mareas.

    Es un recurso hidráulico que tiene analogía con la hidroelectricidad. La energía mareomotriz podría aportar unos 635.000 gigavatios/hora (GW/h) anuales, equivalentes a unos 1.045.000.000 barriles de petróleo ó 392.000.000 toneladas de carbón/año.

    A partir del año 1973, cuando el mundo tomó conciencia de la finitud de los combustibles convencionales no renovables, se intensificaron los estudios de todos los tipos disponibles de energías renovables no convencionales: solar, eólicas, geotérmica, mareomotriz, etc.

    La energía mareomotriz es una de las catorce fuentes nuevas y renovables que estudian los organismos especializados de las Naciones Unidas. Esta energía está disponible en cualesquiera clima y época del año.

    Las mareas pueden apreciarse como variación del nivel del mar, con un período de aproximadamente 12 horas 30 minutos, con una diferencia de nivel de unos 2 metros que, conforme a la topografía costera la diferencia entre bajamar y pleamar puede llegar en unos pocos casos hasta los 15 metros. Y esta característica se observa en un centenar de lugares.

    La técnica utilizada consiste en encauzar el agua de la marea en una cuenca, y en su camino accionar las turbinas de una central eléctrica. Cuando las aguas se retiran, también generan electricidad. Se considera que los lugares más viables para aprovechar esta energía son unos 40, que rendirían unos: 350.000 GW/h anuales. Para obtener esta cantidad de energía sería necesario quemar unos 220 millones de barriles de petróleo/año. Las áreas más prometedoras son:

La parte de la Bahía de Funday, Canadá.
Las Bahías de Cobscook y Passamaquoddy, Estados Unidos.
Chansy, Francia.
El Golfo de Mezen, en la ex Unión Soviética.
El estuario del río Servern, Inglaterra.
La ensenada de Walcott, Austria.
San José, en la costa patagónica Argentina.
Onchón, en Corea del Sur.

    La primera central mareomotriz fue la de Rance, en Francia, que estuvo funcionando casi dos décadas desde 1967. Consistía en una presa de 720 metros de largo, que creaba una cuenca de 22 Km2. Tenia una exclusa para la navegación y una central con 24 turbinas de bulbo y seis aliviaderos, y generaba 240MW . Desde el punto de vista técnico-económico funcionaba muy satisfactoriamente, y proporcionó muchos datos y experiencias para proyectos del futuro. Rance producía 500 GW/año: 300.000 barriles de petróleo. Sus gastos anuales de explotación en 1975 fueron comparables a los de plantas hidroeléctricas convencionales de la época, no perjudicaban al medio ambiente y proporcionaba grandes beneficios socioeconómicos en la región. Se benefició la navegación del río y se duplicó el número de embarcaciones que pasan por la esclusa, y en el coronamiento de esta estructurase construyó una carretera.

    Proyecto Kislogubskaya, de Rusia. Esta central experimental, ubicada en el mar de Barentz, con una capacidad de 400KW, fue la segunda de esta clase en el mundo. Se empleó un método empleado en Rance: cada módulo de la casa de máquinas, incluídos los turbogeneradores, se fabricaron en tierra y se llevaron flotando hasta el lugar elegido y se hundieron en el lecho previamente elegido y preparado. Se puso en marcha en 1968 y envío electricidad a la red nacional.

    El único problema es el elevado costo inicial por KW de capacidad instalada, pero se deberá tener en cuenta que no requiere combustible, no contamina la atmósfera y su vida útil se calcula un siglo.

    Por todo ello, sería interesante retomar el estudio de éstas y otras energías renovables no convencionales para asegurar un futuro predecible.

Características de la energía mareomotriz

    La explotación de la energía potencial correspondiente a la sobreelevación del nivel del mar aparece en teoría como muy simple: se construye un dique cerrando una bahía, estuario o golfo aislándolo del mar exterior, se colocan en él los equipos adecuados (turbinas, generadores, esclusas) y luego, aprovechando el desnivel que se producirá como consecuencia de la marea, se genera energía entre el embalse así formado y el mar exterior.

    Esta energía es, sin embargo, limitada; la potencia disipada por las mareas del globo terrestre es del orden de 3 TW, de los cuales sólo un tercio se pierde en mareas litorales. Además , para efectividad la explotación, la amplitud de marea debe ser superior a los 4 metros, y el sitio geográfico adecuado, lo que elimina prácticamente el 80% de la energía teóricamente disponible, dejando aprovechables unos 350 TW-hr por año (Bonefille, 1976).A modo de resumen se muestran la fig. 1 los proyectos al año 1982.

    Uno de los mayores inconvenientes en la utilización aparece precisamente debido a las características inherentes al fenómeno de las mareas. En efecto, como el nivel del mar varía (con un período del orden de 12 has. 30 min. en las zonas apuntadas), a menos que se tomen las precauciones necesarias, la caída disponible (y la potencia asociada) varían de la misma forma, y por lo tanto se anulan dos veces por día. Además, la marea sigue el ritmo de la luna y no del sol, de manera que hay un retardo diario de 30 min., en las horas en que dichas energía está disponible. Los esquemas teóricos diseñados para salvar esta dificultad resultan antieconómicos y actualmente el problema solo se puede resolver con regulación externa o interconexión.

Como contrapartida, un análisis del promedio de amplitudes demuestra que, a los fines prácticos que se persiguen, el mismo puede considerarse constante a lo largo del año e incluso con el transcurso de los mismos (investigadores franceses y rusos señalan diferencias de 4 al 5% en 18 años ); desapareciendo el riesgo de los períodos de sequía, característicos de las centrales hidroeléctricas.

Futuro de la energía mareomotriz

    Los avances actuales de la técnica , el acelerado crecimiento de la demanda energética mundial , y el siempre latente incremento en el precio de los combustibles son factores primordiales que achican cada vez más la brecha entre los costos de generación mareomotriz y los de las fuentes convencionales de energía. Así lo entienden países como Canadá e Inglaterra, donde se incorpora la misma a los planes energéticos como solución a medianos plazos en el proceso de sustitución de plantas termales.

    Respecto a la forma de funcionamiento y construcción de las plantas, actualmente se aceptan ciertas premisas básicas como por ejemplo:

Se asume el sistema de embalse único y simple efecto como el más apropiado desde el punto de vista económico.
En lo que hace al diseño constructivo , se adopta en la mayor parte de la obra el uso de cajones prefabricados (caissons) incluso en reemplazo de los diques complementarios de relleno (éstos se reservan solamente para las zonas intertidales).
La importancia de la organización constructiva se hace evidente en la necesidad de reducir el tiempo de cierre y aceleración de este modo el instante de puesta en marcha. Para ello , se cree conveniente colocar las turbomáquinas con posterioridad al cierre de la obra.
Las turbinas Bulbo y strafflo se usan indistintamente para los estudios comparativos de costos, aunque este último tipo reduce en un 20% el peso muerto (hormigón y balasto) de la obra civil. Sin embargo , todavía no hay en el mercado unidades Strafflo de gran diámetro suficientemente probadas. En Annapolis Royal (Canadá),se puso en funcionamiento una unidad experimental (d= 7.6 m.)que servirá para testear las características de funcionamiento en condiciones reales (whitaker,1982).
La forma de regulación más conveniente es la incorporación de la producción a sistemas o redes de interconexión (cuya capacidad debe ser por lo menos 10 veces superior a la magnitud de la usina) ; o en su defecto una conexión optimizada con centrales de acumulación por bombeo (Gibson y Wilson, 1979) o hidroeléctrica (Bernshtein, 1965, Godin, 1974).

    Una de las ventajas más importantes de estas centrales es que tienen las características principales de cualquier central hidroeléctrica convencional, permitiendo responder en forma rápida y eficiente a las fluctuaciones de carga del sistema interconectado, generando energía libre de contaminación , externa de variaciones estacionales o anuales, a un costo de mantenimiento bajo y con una vida útil prácticamente ilimitada.

    Dentro de las desventajas se encuentran: la necesidad de una alta inversión inicial ( por otra parte características de cualquier obra de explotación energética ) sumado al suministro intermitente, variable y desfasado de los bloques de energía.